دوره تحلیلگر داده

اخرین بروزرسانی آذر 20, 1403
5.0 /5
(4)
41 نفر ثبت نام کرده اند

درباره این دوره

هدف ما تربیت نیروی متخصص و مورد نیاز بازار کار در حوزه های مختلف از جمله علوم کامپیوتر، برنامه نویسی، هوش مصنوعی و … است. توی دوره تحلیلگر داده (Data Analyst) ما شما رو طبق نیاز بازار کار این رشته آموزش و جهت استخدام آماده میکنیم. تمام موسسات و سایت هایی که توی این حوزه ها فعالیت می کنند، دوره های مختلفی مانند، دوره جامع علم داده، هوش مصنوعی، هوش تجاری و … دارند اما فقط براساس یک سری سرفصل های کلی آموزش می دهند و بعد از گذراندن این دوره ها، شما از هر حوزه هوش مصنوعی، یک بخش کوچکی یاد گرفته اید و نمی توانید برای پوزیشن شغلی خاصی اپلای کنید یا لااقل باید خودتون مباحث دیگری بخونید تا برای این پوزیشن های شغلی آماده بشید.

ما توی این دوره شما رو برای پوزیشن شغلی تحلیلگر داده (Data Analyst) آماده می کنیم پس قرار نیست مثل بقیه موسسات، از هر حوزه هوش مصنوعی یک مبحث رو بگیم، الکی 300 ساعت آموزش بدیم و در انتها هم مشخص نباشد که قراره توی چه بخشی از هوش مصنوعی فعالیت کنید. آیا می دانستید که ما بیش از 15 پوزیشن شغلی توی هوش مصنوعی داریم که موقعیت شغلی تحلیل گر داده (Data Analyst) تنها یکی از اون هاست؟ پس ما توی این دوره، فقط روی این موقعیت شغلی تمرکز می کنیم و هر آن چیزی که لازم باشد تا شما رو به یک Data Analyst حرفه ای تبدیل کند آموزش میدهیم.​

برای دریافت مشاوره رایگان و ثبت نام در دوره تحلیلگر داده ویتایک، اطلاعات تماس خود را در فرم زیر ثبت کنید.

ثبت نام در دوره تحلیلگر داده

این قسمت برای اهداف اعتبارسنجی است و باید بدون تغییر باقی بماند.

اهداف یادگیری

آماده شدن برای ورود به پوزیشن شغلی تحلیل گر داده
پروژه محور و انجام تمرینات به صورت گروهی و تیمی
کانکشن ساختن و ارتباط با افراد فعال این حوزه
مشاوره و منتورینگ رایگان تا انتهای دوره و حتی بعد از آن

موارد ارائه شده

  • سرفصل های استاندارد و متناسب با نیاز بازار کار
  • آموزش بر اساس پوزیشن شغلی تحلیل گر داده نه صرفا براساس یک سری سرفصل کلی
  • مدرسین باتجریه و کیفیت بالی آموزش ها
  • اعطای مدرک در پایان دوره
  • پشتیبانی 24 ساعته در طول دوره و ارتباط مستقیم با مدرسین جهت پرسیدن سوالت و مشاوره
  • انجام پروژه های عملی به صورت تکی و گروهی جهت تسلط کافی بر مباحث
  • ارتباط و ساختن کانکشن با بقیه دانشجویان دوره جهت انجام پروژه های گروهی و همچنین کار گروهی بعد از اتمام دوره
  • دعوت از متخصصین این حوزه جهت انتقال تجربه و کانکشن برقرار کردن با آن ها
  • نوشتن توصیه نامه و معرفی به شرکت های مختلف جهت استخدام در موقعیت شغلی تحلیل گر داده

مخاطب هدف

  • علاقه مندان به هوش مصنوعی و تحلیل داده
  • افرادی که قصد دارند در حوزه تحلیل داده فعالیت کنند
  • دانشجویان فعال در حوزه های هوش مصنوعی و تحلیل داده

بازخورد دانشجو

5.0
4 رتبه بندی
100%
0%
0%
0%
0%

نقد و بررسی (3)

نظر

بهترین دوره تحلیل داده

دوره فوق العاده ای هست

برنامه تحصیلی

125 درس200 ساعت

فصل اول: بررسی موقعیت شغلی Data Analyst از ابعاد مختلف توضیحات فصل

آموزش تحلیل داده
در فصل اول دوره در مورد جایگاه شغلی تحلیل گر داده یا Data Analyst صحبت میکنیم و وظایف این پوزیشن شغلی رو توی شرکت های مختلف توضیح میدیم. پس قبل از شروع آموزش های عملی، شما باید در مورد این جایگاه شغلی اطلاعات خوبی داشته باشید، از مزایا و معایب اون بدونید، از چالش هایی که توی این شغل هست مطلع بشید و کلی موارد دیگه که قراره بهتون بگیم. پس توی انتهای این بخش، میفهمید که آیا این پوزیشن و جایگاه شغلی برای شما مناسب هست یا نه، اصلا بهش علاقه مندید یا نه تصورات دیگه ای درموردش داشتید؟
پس با آگاهی و اطلاعات خوبی که بدست میارید، وارد بخش های بعدی این دوره جذاب میشید.
نقشه راه یادگیری تحلیل داده و شروع آموزش3:02:30پیش نمایش
تکالیف
آزمون
جلسه مشاوره آنلاین و رفع مشکل با مدرس00:00
گروه پرسش و پاسخ فصل اول

فصل دوم: ریاضیات و آمار احتمالات توضیحات فصل

تمام افرادی که به هر طریقی توی یکی از پوزیشن های مرتبط با داده فعالیت می کنند، باید به آمار احتمالات و ریاضیات مسلط باشند چون تحلیل داده به شدت وابسته به علم آمار و ریاضیات است. توی این فصل تقریبا هر آن چیزی را که از ریاضیات لازم داشته باشید تدریس میکنیم تا هنگام سروکله زدن با داده ها، توی مباحث ریاضیات چالشی نداشته باشید و فهم خوبی از الگوریتم ها و داده ها و مسائل داشته باشید.

فصل سوم: برنامه نویسی توضیحات فصل

توی این فصل زبان برنامه نویسی پایتون و R رو آموزش میدیم که هر دو زبان محبوب جهت کار در حوزه هوش مصنوعی، تحلیل داده، علم داده و … هستند. یادگیری پایتون یا R برای هر کسی که توی حوزه داده فعالیت می کند الزامی است چون تقریبا تمام کتابخانه ها و الگوریتم های حوزه داده و هوش مصنوعی با زبان پایتون و R نوشته شده است. توی این فصل از سطح صفر پایتون و R رو آموزش میدیم، مثال ها و تمرین های خوبی حل میکنیم و تقریبا مباحث اصلی و مهمی از پایتون و R که توی جایگاه شغلی تحلیلگر داده بهش نیاز داشته باشید رو میگیم.

فصل چهارم: جمع آوری داده ها توضیحات فصل

خیلی از اوقات ما به داده هایی نیاز داریم که در دسترس نیستند و باید خودمان اقدام به جمع آوری آن ها کنیم. فرض کنید شما به عنوان یک فعال حوزه داده نیاز دارید که تحلیل و بررسی از نظرات کاربران در سایت های فروشگاهی داشته باشید، یا مثلا کامنت های موجود توی یکی از پست های اینستاگرام رو استخراج کنید و تحلیل کنید که نظر کاربران درباره یک پدیده خاص چی بوده؟ برای انجام این کارها لازم است که شما با طراحی ربات های خزنده وب یا Web Crawler ها آشنا باشید. توی این فصل با تمرین ها و پروژه های متنوعی که انجام میدیم، قادر خواهید بود که هر نوع داده ای که نیاز دارید را از سایت های مختلف و شبکه های اجتماعی نظیر اینستاگرام استخراج کنید و کارهای تحلیلی خوبی روی آن ها انجام دهید.

فصل پنجم: آماده سازی، پیش پردازش و بصری سازی داده ها توضیحات فصل

به مرحله آماده سازی و پیش پردازش داده ها میرسیم، جایی که داده ها رو پردازش، پیش پردازش و برای اهداف خاصی آماده سازی می کنیم. بخش زیادی از تایم هر فردی که تو حوزه تحلیل داده کار میکند، سروکله زدن با داده هاست پس خیلی مهمه که شما جنس دیتا رو بشناسید و بتونید عملیات های مختلف رو روی اون ها پیاده سازی کنید تا برای اهداف خودتون بکار ببرید. توی این فصل حسابی با داده ها سرو کله میزنیم طوری که کار با داده به یکی از علاقه مندی هاتون تبدیل بشه. با کتابخونه هایی مثل Numpy، Pandas و ابزار پردازش داده های حجیم مثل Spark کار میکنیم که جزو قوی ترین ابزارهای پردازش و آماده سازی داده ها هستند.

فصل ششم: نگهداری داده ها توضیحات فصل

بانک های اطلاعاتی یا پایگاه داده ها، بستری جهت ذخیره سازی داده ها و گزارش گیری هستند. پایگاه داده های مختلفی وجود دارند که SQL Server یکی از قدیمی ترین و متداول ترین نوع آن هاست و داده ها را به صورت جدولی در خود ذخیره می کند. به جز اس کیو ال سرور، پایگاه داده مونگو دی بی (Mongo DB) نیز یکی از پر کاربردترین نوع دیتابیس ها در حوزه داده هست. به کمک این دیتابیس می توان داده ها را به صورت سند (Document) ذخیره کرد و بهترین گزینه برای کسانی است که در حوزه های علم داده فعالیت می کنند. علاوه بر آموزش کامل این دو پایگاه داده، سرویس SSIS که مخفف (SQL Server Integration Services) هست رو نیز بررسی می کنیم. این سرویس توی SQL Server و ابزار قدرتمندی برای انجام فرآیند ETL به حساب میاد. به کمک این سرویس می توانید داده هایی را از منابع مختلف (E) Extract کنید، آن ها را (T) Transform و در سرویس های مختلف (L) Load کنید. این ابزار به شدت برای یک تحلیل گر داده و متخصین علوم داده کاربردی هست و جهت ساخت انبار داده نیز مورد استفاده قرار می گیرد.

فصل هفتم: دستیابی به بینش عمیقی از داده ها با رویکرد هوش تجاری جهت تصمیمات خردمندانه توضیحات فصل

از مهم ترین تخصص و مهارت هایی که یک تحلیل گر داده یا افراد فعال حوزه علم داده و دیتاساینس باید داشته باشند، هوش تجای است. تدریس جامع و کاربردی هوش تجاری که توی این بخش صورت می گیرد، از مهم ترین نقاط قوت این دوره ست و قراره در این بخش با اصول هوش تجاری، ساخت داشبوردهای تجاری و مدیریتی، سازمان داده محور و... آشنا شوید. توی این فصل با ابزار محبوب Power BI هوش تجاری رو توضیح میدهیم، عملیات تحلیل و آنالیز داده ها رو با زبان DAX انجام می دهیم، در مورد KPI های بیزینس و اصول داده محوری سازمان صحبت می کنیم، داشبورهای حرفه ای طراحی می کنیم و این داشبوردها را به صورت آنلاین در وب و اپلیکیشن های موبایل منتشر می کنیم تا هنگام کار در این حوزه چالش خاصی نداشته باشید و به راحتی از پس پروژه های هوش تجای و تحلیل پیشرفته داده ها بربیاید. علاوه بر Power BI، هوش تجاری توی اکسل رو هم آموزش میدیم چون به عنوان یک فعال حوزه داده، قطعا باید با اکسل آشنا شوید، بتونید داده های خود را با اون تحلیل و حتی داشبوردهای تحلیل داده رو طراحی کنید. در نتیجه نرم افزار قدرتمند اکسل رو هم به شما آموزش میدیم تا دانش و تخصص شما در این حوزه تکمیل شود.

فصل هشتم: دستیابی به بینش عمیقی از داده ها با مدل های ML جهت تصمیمات هوشمندانه توضیحات فصل

خب میرسیم به فصل جذاب یادگیری ماشین و قراره توی این فصل باهم دیگه انواع روش های یادگیری ماشین رو بررسی و آموزش بدیم. یعنی در مورد روش های نظارت شده (Supervised)، غیرنظارت شده (UnSupervised) و رگرسیون (Regression) صحبت میکنیم و با مثال های کاربردی، الگوریتم های یادگیری ماشینی که توی این حوزه هستند رو توی زبان پایتون آموزش میدیم. علاوه بر آن، وارد مباحث متن کاوی یا پردازش متن (Text Mining) میشیم و مفاهیم پایه و اصلی این حوزه رو آموزش میدیم. بعد از اون از الگوریتم های یادگیری ماشین جهت حل مسائل حوزه پردازش متن استفاده میکنم و مثال های خوبی حل میکنیم مانند: آنالیز احساسات، طبقه بندی متن و اخبار، خوشه بندی اسناد متنی، سیستم خلاصه ساز متنی و... که یادگیری این موراد برای یک تحلیل گر داده لازمه چون علاوه بر داده های عددی، با حجم زیادی از داده های متنی نیز سروکار دارد و باید بتواند آن ها را تحلیل کند.

فصل نهم: مهاجرت به زیرساخت های توسعه و نگهداری پروژه های برنامه نویسی توضیحات فصل

توی این فصل، سه عنوان آموزشی گیت (Git)، لینوکس (Linux) و استریم لیت (Streamlite) رو آموزش میدیم که هر برنامه نویسی باید واقعا بلد باشه (مخصوصا دو مورد اول). به کمک ابزار گیت و گیت هاب میتونید سورس کدها و پروژه های خودتون رو مدیریت کنید، به کمک لینوکس میتونید کمی پیشرفته تر وارد حوره برنامه نویسی و تحلیل داده بشید و از امکاناتی که این سیستم عامل در اختیارتون قرار میده استفاده کنید. با Streamlite می تونید پروژه های یادگیری ماشین خودتون رو در قالب یک وب اپلیکیشن توسعه بدید و به صورت واقعی اون رو در اختیار طیف وسیعی از افراد و کاربران قرار بدید.

فصل دهم: شنیدن چالش ها و تجربیات متخصصین این حوزه در صنعت توضیحات فصل

توی این فصل از متخصصین با تجربه ای که در بازار کار تحلیل داده و هوش مصنوعی مشغول کار هستند دعوت می کنیم که تجربیات، چالش ها، مزایا و معایبی که در این حوزه در صنعت هست را در اختیار شما قرار دهند که به عنوان چراغ راهی از آن جهت ادامه مسیر خود استفاده کنید. این تجربیات بسیار ارزشمند هستند و به نوعی می توان گفت باعث صرفه جویی زیادی در زمان شما و جلوگیری از آزمون و خطا می شود.

فصل یازدهم: پیدا کردن شغل و آماده شدن برای ورود به بازار کار توی پوزیشن تحلیل گر داده توضیحات فصل

خب میرسیم به فصل آخر دوره تحلیل گر داده، توی این بخش در مورد نکات مهم  و ترفندهایی که میتونید توی این جایگاه شغلی وارد بازار کار بشید صحبت می کنیم. یا  اگر دوست داشته باشید که به صورت فریلنسری یا پروژه ای هم کار کنید، برای این مورد هم بهتون آموزش میدیم که چه کارهایی بکنید تا موفق بشید. رزومه نویسی رو باهم کار میکنیم و نحوه نوشتن یک رزومه خوب و استاندار رو یاد میگیریم که شانس دعوت شما به مصاحبه رو بالا ببره. درمورد نحوه شبکه سازی و ارتباط با افراد مختلف و فعال حوزه تحلیل داده صحبت می کنیم تا بتونید ارتباطات و کانکشن های خودتون رو بالا ببرید و توی این حوزه موفق بشید. امیدواریم که در انتهای دوره بتوانیم به رسالت خود یعنی " توانمند سازی نسل نوجوان و جوان با آموزش های به روز و تربیت نیروی متخصص متناسب بازار کار" به خوبی عمل کرده باشیم و شما رو برای ورورد به بازار کار حرفه ای آماده کرده باشیم.

گواهینامه دوره

با دریافت گواهینامه معتبر از پلتفرم آموزشی ویتایک، اعتبار آموخته های خود را افزایش دهید.

selected template

اساتید دوره

علی نظری زاده

5.0/5
2 دوره
4 دیدگاه
41 دانشجو

بنیان گذار ویتایک | Witaik - مدیر محصول هوش مصنوعی و دیتا ساینتیست | پژوهشگر حوزه هوش مصنوعی

مشاهده بیشتر

مسعود واعظ

برنامه نویس وب (front-end)

5.0/5
2 دوره
4 دیدگاه
0 دانشجو

دانشجوی دکتری مهندسی آی تی | علاقه مند به علم داده و یادگیری ماشین

مشاهده بیشتر

سینا منصوری

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

کارشناسی ارشد دیتاساینس از کشور آمریکا - دیتاساینتیست اسبق همراه اول​

مشاهده بیشتر

امین رضانژاد

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

کارشناسی ارشد مهندسی کامپیوتر دانشگاه گیلان - تیم لید هوش مصنوعی مجموعه راه سینا​

مشاهده بیشتر

فرنام ایرانپور

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

مهندس/تحلیلگر داده اسبق ایرانسل - مهندس/تحلیلگر داده در کشور هلند

مشاهده بیشتر

زینب شیدایی

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

کارشناسی ارشد هوش مصنوعی - مدرس پایتون و علم داده - مدرس در دانشگاه تهران، دانشگاه هوا فضا اصفهان، دانشگاه نفت آبادان و مراکز مختلف دیگر

مشاهده بیشتر

امیرحسین قدیمی

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

کارشناس ارشد رمزنگاری دانشگاه علم و صنعت - مهندس داده​

مشاهده بیشتر

امیرحسن شاکری

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

دکتری مدیریت کسب و کار، مدیر پروژه، بازاریابی و مشاور مدیر عامل شرکت مفتاح رایانه افزار - بنیانگذار و دبیر اجرایی بنیان تحول دیجیتال​

مشاهده بیشتر

فائزه عظیم زاده

5.0/5
1 دوره
4 دیدگاه
0 دانشجو
مشاهده بیشتر

فرزین عظیم زاده

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

کارشناسی ارشد زبان شناسی رایانشی دانشگاه تهران - محقق NLP آزمایشگاه دانشگاه تهران

مشاهده بیشتر

سینا محمدیاری

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

تحلیل گر داده و هوش تجاری در دیجی کالا، آپارات، همراه اول، آسان پرداخت و...

مشاهده بیشتر

مرضیه سادات سجادی

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

کارشناسی ارشد فیزیک اتمی دانشگاه صنعتی شیراز - تحلیل گر داده شرکت داده کاو​

مشاهده بیشتر

حسن بشارتی

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

کارشناس ارشد هوش مصنوعی دانشگاه علامه طباطبایی - پژوهشگر هوش مصنوعی در علوم پزشکی و ژنتیک

مشاهده بیشتر

فرشته اسلامی

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

کارشناسی ارشد مهندسی برق، کنترل دانشگاه تربیت مدرس - برنامه نویس و متخصص حوزه داده

مشاهده بیشتر

کیمیا نورعلی

5.0/5
1 دوره
4 دیدگاه
0 دانشجو

استاد دانشگاه سمنان - مهندس بینایی ماشین اسبق شرکت پرتو تاپ رایان​

مشاهده بیشتر

بازخورد دانشجو

5.0
4 رتبه بندی
100%
0%
0%
0%
0%

نقد و بررسی (3)

نظر

بهترین دوره تحلیل داده

دوره فوق العاده ای هست

۷,۹۰۰,۰۰۰ تومان

سطح
همه سطح‌ها
مدت زمان 200 ساعت
تعداد درس
125 درس

موارد ارائه شده

  • سرفصل های استاندارد و متناسب با نیاز بازار کار
  • آموزش بر اساس پوزیشن شغلی تحلیل گر داده نه صرفا براساس یک سری سرفصل کلی
  • مدرسین باتجریه و کیفیت بالی آموزش ها
  • اعطای مدرک در پایان دوره
  • پشتیبانی 24 ساعته در طول دوره و ارتباط مستقیم با مدرسین جهت پرسیدن سوالت و مشاوره
  • انجام پروژه های عملی به صورت تکی و گروهی جهت تسلط کافی بر مباحث
  • ارتباط و ساختن کانکشن با بقیه دانشجویان دوره جهت انجام پروژه های گروهی و همچنین کار گروهی بعد از اتمام دوره
  • دعوت از متخصصین این حوزه جهت انتقال تجربه و کانکشن برقرار کردن با آن ها
  • نوشتن توصیه نامه و معرفی به شرکت های مختلف جهت استخدام در موقعیت شغلی تحلیل گر داده
اعتبار ثبت نام: مادام العمر

آیا می خواهید برای همه فعالیت ها، اعلان های پوش نوتیفیکیشن دریافت کنید؟

یا از شبکه های اجتماعی استفاده کنید