
 

Copyrighted By @Curious_.programmer 
 

 

Python EBook 
By @Curious_.programmer  

                  
 

 

 



  
  

 

1.1 What Is Python? 
 

Python is a programming language that is commonly used to create 

websites and applications, automate processes, and do data analysis. 

Python is a general- purpose programming language, which means it can 

be used to construct a wide range of applications and isn't specialized for 

any particular problem. Because of its flexibility and beginner-friendliness, 

it has become one of the most widely used programming languages today. 

 

Python is a general purpose, dynamic, high-level, and interpreted 

programming language. It supports Object Oriented programming approach to 

develop applications. It is simple and easy to learn and provides lots of high-

level data structures. 

 

Python is easy to learn yet powerful and versatile scripting language, which 

makes it attractive for Application Development. 

Python's syntax and dynamic typing with its interpreted nature make it an ideal 

language for scripting and rapid application development. 

 

 
 
 
 



  
  

 

1.2 Why Python Is Popular? 
 
Python's popularity is due to a variety of factors. 
Here's a closer look at what makes it so useful to 
programmers 
 
It features a straightforward syntax that resembles normal 

English, making it easy to read and comprehend. This speeds 

up the development of projects as well as the improvement of 

existing ones. 

 
It's adaptable. Python may be used for a variety of 

purposes, including web development and 

machine learning. 

 
It's user-friendly, making it popular among new programmers. 

It's free to use and distribute, even for commercial, because it's 
open source. 

The Python module and library archive—bundles of code 

produced by third-party users to extend Python's capabilities—

is large and expanding. 

 
Python has a strong community that adds to the library of 

modules and libraries and serves as a resource for other 

programmers. Because of the large support network, finding 

a solution to a stumbling block is quite simple; someone has 

almost certainly encountered the same issue before. 



  
  

 

1.3 What can be done using 
Python? 
Python is widely used for web and software development, task 

automation, data analysis, and data visualization. Python has been 

embraced by many non- programmers, such as accountants and 

scientists, for a range of common activities, such as arranging money, 

due to its relative ease of learning. 

Data analysis and machine Learning  
Python has become a data science standard, allowing data 

analysts and other professionals to do complicated statistical 

computations, generate data visualization’s, construct 

machine learning algorithms, manage and analyses data, and 

perform other data-related activities using the language. 

 

Web development 
Python is frequently used to create a website's or application's 

back end—the bits that the user does not see. Sending data 

to and from servers, processing data and connecting with 

databases, URL routing, and maintaining security are all 

things that Python can help with in web development. For web 

development, Python has a number of frameworks. Django 

and Flask are two popular frameworks 

 

 



  
  

 

Automation or scripting 
If you find yourself repeating a job, you may make it more 

efficient by automating it with Python. Scripting is the process 

of writing code to create these automated operations. 

Automation may be used in the coding industry to check for 

mistakes across many files, convert files, do simple math, and 

eliminate duplicates in data. 

 

 
 
 
 
 
 
 
 
 
 
 



  
  

 

1.4 Why learn Python? 
Python provides many useful features to the programmer. 

These features make it most popular and widely used 

language. We have listed below few-essential feature of 

Python. 

 

 Interpreted Language 

 Object-Oriented Language 

 Open Source Language 

 Extensible 

 Learn Standard Library 

 GUI Programming Support 

 Integrated 

 Embeddable 

 Dynamic Memory Allocation 

 

 
 
 



  
  

 

1.5 Python Installation 
 
1.5.1 Downloading installing Python  
1. Go to www.python.org/downloads/ 

2. Download Python as per your system requirement 

 

Installing python on windows  
1. Click on Python Releases for Windows, select the link 

for the latest Python3 Release – Python 3.x.x 

 

2. Scroll to the bottom and select either Windows x86-64 

executable Installer for 64-bit or Windows x86 

executable installer for 32-bit 

 

Installing python on Linux  
1. Open the Ubuntu Software Center folder 

2. Select Developer Tools from the All Software drop-down 

list box 

3. Double-click the Python 3.3.4 entry 

4. Click Install 

5. Close the Ubuntu Software Center folder 



  
  

 

1.6 Python First Program 
 
Unlike the other programming languages, Python provides 

the facility to execute the code using few lines.  

 

We can do this using one statement in Python. 

 

 
  
 
 



  
  

 

 

2.1 Modules in Python  
 

 A Python module is a file containing Python definitions 

and statements. A module can define functions, classes, 

and variables.  

 

 A module can also include runnable code. Grouping 

related code into a module makes the code easier to 

understand and use. It also makes the code logically 

organized. 

 

 



  
  

 

2.2 Comments in Python 
 

 Python Comment is an essential tool for the 

programmers. Comments are generally used to explain 

the code.  

 We can easily understand the code if it has a proper 

explanation.  

 A good programmer must use the comments because in 

the future anyone wants to modify the code as well as 

implement the new module; then, it can be done easily. 

 

 

 

 

 



  
  

 

Single line comment  
 Python single line comment starts with the hashtag 

symbol (#) with no white spaces and lasts till the end of 

the line.  

 

 If the comment exceeds one line then put a hashtag on 

the next line and continue the comment 

 

 

 Example:  

 

 

 



  
  

 

Multiline Comments  
 Python does not provide the option for multiline 

comments. However, there are different ways through 

which we can write multiline comments. 

 

 Python ignores the string literals that are not assigned to 

a variable so we can use these string literals as a 

comment.  

 

 Example:  

 

 

 



  
  

 

2.3 What is pip?  
 

 pip is a package-management system written in Python 

used to install and manage software packages.  

 

 It connects to an online repository of public packages, 

called the Python Package Index.  

 

 pip can also be configured to connect to other package 

repositories, provided that they comply to Python 

Enhancement Proposal 503. 

 

 

 

 

 

 

 

 

 

 

 

 



  
  

 

3.1 Variables in python  
 

 Variable is a name that is used to refer to memory 

location. Python variable is also known as an identifier 

and used to hold value. 

 

 In Python, we don't need to specify the type of variable 

because Python is a infer language and smart enough to 

get variable type. 

 

 Variable names can be a group of both the letters and 

digits, but they have to begin with a letter or an 

underscore. 

 

 

 



  
  

 

Example:  
 

 

 

3.2 Identifier in python 
Variables are the example of identifiers. An Identifier is used 

to identify the literals used in the program.  
Rules: 

1. The first character of the variable must be an alphabet or 

underscore ( _ ). 

2. All the characters except the first character may be an 

alphabet of lower-case (a-z), upper-case (A-Z), 

underscore, or digit (0-9). 

3. Identifier name must not contain any white-space, or 

special character (!, @, #, %, ^, &, *). 



  
  

 

4. Identifier name must not be similar to any keyword 

defined in the language. 

5. Examples of valid identifiers: a123, _n, n_9, etc. 

6. Examples of invalid identifiers: 1a, n%4, n 9, etc. 

 

3.3 Data Types in python 
 

 Variables can hold values, and every value has a data-

type. Python is a dynamically typed language; hence we 

do not need to define the type of the variable while 

declaring it. The interpreter implicitly binds the value with 

its type. 

 

   

 

 The variable a holds integer value five and we did not 

define its type. Python interpreter will automatically 

interpret variables a as an integer type. 

 

 Python enables us to check the type of the variable used 

in the program. Python provides us the type() function, 

which returns the type of the variable passed. 

 
 
 

a = 5 
 



  
  

 

Python Data Types: 

 

1) Numbers: Number stores numeric values. The integer, 

float, and complex values belong to a Python Numbers 

data-type. 

a) Python supports three types of numeric data- 

i) Integer - Integer value can be any length such as 

integers 10, 2, 29, -20, -150 etc. 

ii) Float- Float is used to store floating-point numbers like 

1.9, 9.902, 15.2, etc. 

iii) Complex number- A complex number contains an 

ordered pair, i.e., x + iy where x and y denote the real 

and imaginary parts, respectively 

 

2) Sequence Type:   

i) String: The string can be defined as the sequence of 

characters represented in the quotation marks. In 

Python, we can use single, double, or triple quotes to 

define a string. 

ii) List: Python Lists are similar to arrays in C. However, 

the list can contain data of different types. The items 

stored in the list are separated with a comma (,) and 

enclosed within square brackets []. 

iii) Tuple: A tuple is similar to the list in many ways. 

Like lists, tuples also contain the collection of the items 

of different data types. The items of the tuple are 



  
  

 

separated with a comma (,) and enclosed in 

parentheses (). 

 

3) Boolean: Boolean type provides two built-in values, True 

and False. These values are used to determine the given 

statement true or false. It denotes by the class bool. True 

can be represented by any non-zero value or 'T' whereas 

false can be represented by the 0 or 'F' 

 

4) Set: Python Set is the unordered collection of the data type. 

It is inerrable, mutable (can modify after creation), and has 

unique elements. In set, the order of the elements is 

undefined; it may return the changed sequence of the 

element.  
 

5) Dictionary: Dictionary is an unordered set of a key-value 

pair of items. It is like an associative array or a hash table 

where each key stores a specific value. Key can hold any 

primitive data type, whereas value is an arbitrary Python 

object. 

 

 

 

 

 

 



  
  

 

 

3.4 operator in Python 
 
The operator can be defined as a symbol which is responsible 

for a particular operation between two operands. Python 

provides variety of operators, which are described as follows. 
o Arithmetic operators 

o Comparison operators 

o Assignment Operators 

o Logical Operators 

o Bitwise Operators 

o Membership Operators 

o Identity Operators 

 

 

 

 

 

 

 

 

 

 

 



  
  

 

Arithmetic operators 

Arithmetic operators are used with numeric values to perform 

common mathematical operations 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Operator Name Example 

+ Addition x + y 

- Subtraction x - y 

* Multiplication x * y 

/ Division x / y 

% Modulus x % y 

** Exponentiation x ** y 

// Floor division x // y 



  
  

 

 
Python Assignment Operators: 

Assignment operators are used to assign values to variables: 

Operator Example Same As 

= x = 5 x = 5 

+= x += 3 x = x + 3 

-= x -= 3 x = x - 3 

*= x *= 3 x = x * 3 

/= x /= 3 x = x / 3 

%= x %= 3 x = x % 3 

//= x //= 3 x = x // 3 

**= x **= 3 x = x ** 3 

&= x &= 3 x = x & 3 

|= x |= 3 x = x | 3 

^= x ^= 3 x = x ^ 3 



  
  

 

>>= x >>= 3 x = x >> 3 

<<= x <<= 3 x = x << 3 

 

Python Comparison Operators 

Comparison operators are used to compare two values: 

 

Operator Name Example 

== Equal x == y 

!= Not equal x != y 

> Greater than x > y 

< Less than x < y 

>= Greater than or 
equal to 

x >= y 

<= Less than or 
equal to 

x <= y 

 

 

 



  
  

 

 

 

Python Logical Operators 

Logical operators are used to combine conditional 

statements: 

 

Operator Description Example 

and  Returns True if both statements are true x < 5 and  x < 10 

or Returns True if one of the statements is true x < 5 or x < 4 

not Reverse the result, returns False if the result 
is true 

not(x < 5 and x < 10) 

 

Python Identity Operators 

Identity operators are used to compare the objects, not if they 

are equal, but if they are actually the same object, with the 

same memory location: 

 

Operator Description Example 

is  Returns True if both variables are the same 
object 

x is y 



  
  

 

is not Returns True if both variables are not the 
same object 

x is not y 

 

 
Python Membership Operators 

Membership operators are used to test if a sequence is 

presented in an object: 

Operator Description Example 

in  Returns True if a sequence with the specified value is present 
in the object 

x in y 

not in Returns True if a sequence with the specified value is not 
present in the object 

x not in y 

 

Python Bitwise Operators 

Operator Name Description 

&  AND Sets each bit to 1 if both bits are 1 

| OR Sets each bit to 1 if one of two bits is 1 



  
  

 

 ^ XOR Sets each bit to 1 if only one of two bits is 1 

~  NOT Inverts all the bits 

<< Zero fill left shift Shift left by pushing zeros in from the right and let 
the leftmost bits fall off 

>> Signed right 
shift 

Shift right by pushing copies of the leftmost bit in 
from the left, and let the rightmost bits fall off 

 

 
 
 
 
 
 
 
 
 



  
  

 

3.5 Input In Python  
 
Python input() Function 

 

Python input() function is used to get input from the user. It 

prompts for the user input and reads a line. After reading data, 

it converts it into a string and returns that. It throws an error 

EOFError if EOF is read. 

 

Parameters 

prompt: It is a string message which prompts for the user 

input 

 
Return 

It returns user input after converting into a string. 

Let's see some examples of input() function to understand it's 

functionality. 

 

 

 

 

 

 

 



  
  

 

Python input() Function Example 

 

Input- 

 
 

Output: 

 



  
  

 

4.1 list In Python 
 
Lists are just like dynamic sized arrays, declared in other 

languages (vector in C++ and ArrayList in Java).  

 

Lists need not be homogeneous always which makes it a 

most powerful tool in Python.  

 

A single list may contain Data Types like Integers, Strings, as 

well as Objects. Lists are mutable, and hence, they can be 

altered even after their creation. 

 

A list can be defined as a collection of values or items of 

different types. The items in the list are separated with the 

comma (,) and enclosed with the square brackets []. 

 

 

 



  
  

 

Characteristics of Lists 

 

The list has the following characteristics: 

 The lists are ordered. 

 The element of the list can access by index. 

 The lists are the mutable type. 

 The lists are mutable types. 

 A list can store the number of various elements. 

 

A list can be define as below 

 

 
 



  
  

 

4.2 Tuples in Python  
 
Python Tuple is used to store the sequence of immutable 

Python objects.  

The tuple is similar to lists since the value of the items stored 

in the list can be changed, whereas the tuple is immutable, 

and the value of the items stored in the tuple cannot be 

changed. 

 

Creating a tuple 

A tuple can be written as the collection of comma-separated 

(,) values enclosed with the small () brackets. The 

parentheses are optional but it is good practice to use. A tuple 

can be defined as follows. 

 

Example- 

 



  
  

 

  

4.3 Set in Python  
 
A Python set is the collection of the unordered items. Each 

element in the set must be unique, immutable, and the sets 

remove the duplicate elements. Sets are mutable which 

means we can modify it after its creation. 

 

Unlike other collections in Python, there is no index attached 

to the elements of the set, i.e., we cannot directly access any 

element of the set by the index. However, we can print them 

all together, or we can get the list of elements by looping 

through the set. 

 

Creating a set 

The set can be created by enclosing the comma-separated 

immutable items with the curly braces {}. Python also provides 

the set() method, which can be used to create the set by the 

passed sequence. 

 

 

 

 

 

 



  
  

 

Example 1: Using curly braces 

 
 

Example 2: Using set() method 

 
 



  
  

 

 

4.4 Dictionary in Python 
 
Python Dictionary is used to store the data in a key-value pair 

format. The dictionary is the data type in Python, which can 

simulate the real-life data arrangement where some specific 

value exists for some particular key. It is the mutable data-

structure. The dictionary is defined into element Keys and 

values. 

 Keys must be a single element 

 Value can be any type such as list, tuple, integer, etc. 

 

Creating the dictionary 

The dictionary can be created by using multiple key-value 

pairs enclosed with the curly brackets {}, and each key is 

separated from its value by the colon (:).The syntax to define 

the dictionary is given below. 

 

Syntax: 

Dict = {"Name": "Tom", "Age": 22} 
In the above dictionary Dict, The keys Name and Age are the 

string that is an immutable object. 

Let's see an example to create a dictionary and print its 

content. 



  
  

 

 

 

Example- 

 
 

Accessing the dictionary values 

 

We have discussed how the data can be accessed in the list 

and tuple by using the indexing. 

 

However, the values can be accessed in the dictionary by 

using the keys as keys are unique in the dictionary. 

 

The dictionary values can be accessed in the following way. 

 

 

 



  
  

 

 

 

Code: 

 

Output:  

 
 

 

 

 

 

 

 

 

 

 

 

1. Employee = {"Name": "YADNYESH", "Age": 29, "salary":25000}   

2. print(type(Employee))   

3. print("printing Employee data .... ")   

4. print("Name : %s" %Employee["Name"])   

5. print("Age : %d" %Employee["Age"])   

6. print("Salary : %d" %Employee["salary"]) 

7. print("Company : %s" %Employee["Company"])   

 

<class 'dict'> 

printing Employee data ....  

Name : YADNYESH 

Age : 29 

Salary : 25000 

> 



  
  

 

Adding dictionary values 

 

The dictionary is a mutable data type, and its values can be 

updated by using the specific keys.  

 

The value can be updated along with key Dict[key] = value. 

The update() method is also used to update an existing value. 

 

Note: If the key-value already present in the dictionary, the 

value gets updated. Otherwise, the new keys added in the 

dictionary. 

 

Let's see an example to update the dictionary values. 

 

 

 

 

 

 

 

 

 

 

 



  
  

 

 

Programme  

1. # Creating an empty Dictionary 
2. Dict = {} 
3. print("Empty Dictionary: ") 
4. print(Dict) 
5.  
6. # Adding elements to dictionary one at a time 
7. Dict[0] = 'Peter' 
8. Dict[2] = 'Joseph' 
9. Dict[3] = 'Ricky' 
10. print("\nDictionary after adding 3 elements: ") 
11. print(Dict) 
12.  
13. # Adding set of values 
14. # with a single Key 
15. # The Emp_ages doesn't exist to dictionary 
16. Dict['Emp_ages'] = 20, 33, 24 
17. print("\nDictionary after adding 3 elements: ") 
18. print(Dict) 
19.  
20. # Updating existing Key's Value 
21. Dict[3] = 'Java' 
22. print("\nUpdated key value: ") 
23. print(Dict) 

 

 

 

 

 

 



  
  

 

 

Output- 
 

 

 

 

 

 

 

 

 

Empty Dictionary:  

{} 

 

Dictionary after adding 3 elements:  

{0: 'Peter', 2: 'Joseph', 3: 'Ricky'} 

 

Dictionary after adding 3 elements:  

{0: 'Peter', 2: 'Joseph', 3: 'Ricky', 'Emp_ages': (20, 33, 24)} 

 

Updated key value:  

{0: 'Peter', 2: 'Joseph', 3: 'Java', 'Emp_ages': (20, 33, 24)} 



  
  

 

 

4.5 Python Type Casting  
Type Casting is the method to convert the variable data type 

into a certain data type in order to the operation required to 

be performed by users. In this article, we will see the various 

technique for typecasting. 

 

There can be two types of Type Casting in Python – 

 Implicit Type Casting 

 Explicit Type Casting 

 
Implicit Type Casting 
In this, methods, Python converts data type into another data type 

automatically. In this process, users don’t have to involve in this process.  

 

Program 

  

# Python program to demonstrate 

# implicit type Casting 

# Python automatically converts 

# a to int 

a = 7 



  
  

 

print(type(a)) 

  

# Python automatically converts 

# b to float 

b = 3.0 

print(type(b)) 

  

# Python automatically converts 

# c to float as it is a float addition 

c = a + b 

print(c) 

print(type(c)) 

  

# Python automatically converts 

# d to float as it is a float multiplication 

d = a * b 

print(d) 

print(type(d)) 

 



  
  

 

 

Output: 

 

 

Explicit Type Casting 

In this method, Python need user involvement to convert the 

variable data type into certain data type in order to the 

operation required. 

 

Mainly in type casting can be done with these data type 

function: 

Int() : Int() function take float or string as an argument and 

return int type object. 

float() : float() function take int or string as an argument and 

return float type object. 

str() : str() function take float or int as an argument and return 

string type object. 

 



  
  

 

Program  

 
Output: 



  
  

 

 
There comes situations in real life when we need to make 

some decisions and based on these decisions, we decide 

what should we do next. Similar situations arise in 

programming also where we need to make some decisions 

and based on these decisions we will execute the next block 

of code. Decision-making statements in programming 

languages decide the direction of the flow of program 

execution 

   
Statement Description 

If Statement The if statement is used to test a specific condition. If the condition is true, a 
block of code (if-block) will be executed. 

If - else 
Statement 

The if-else statement is similar to if statement except the fact that, it also 
provides the block of the code for the false case of the condition to be checked. 
If the condition provided in the if statement is false, then the else statement will 
be executed. 

Nested if 
Statement 

Nested if statements enable us to use if ? else statement inside an outer if 
statement. 

 

 



  
  

 

Indentation in Python 

For the ease of programming and to achieve simplicity, 

python doesn't allow the use of parentheses for the block level 

code. In Python, indentation is used to declare a block.  

 

If two statements are at the same indentation level, then they 

are the part of the same block. 

 

Generally, four spaces are given to indent the statements 

which are a typical amount of indentation in python 

Indentation is the most used part of the python language since 

it declares the block of code.  

 

All the statements of one block are intended at the same level 

indentation. We will see how the actual indentation takes 

place in decision making and other stuff in python. 

 

5.1 If Statement  
The if statement is used to test a particular condition and if the 

condition is true, it executes a block of code known as if-block. 

The condition of if statement can be any valid logical 

expression which can be either evaluated to true or false. 

 

 

 



  
  

 

Syntax: 

 
 

Flowchart: 

 
 
 
 
 



  
  

 

Example:  

 
 

Output:  

 

 

5.2 If-else Statement  
 
The if-else statement provides an else block combined with 

the if statement which is executed in the false case of the 

condition. 

 

If the condition is true, then the if-block is executed. 

Otherwise, the else-block is executed. 



  
  

 

 
Syntax: 

 
 

Flowchart:  

 



  
  

 

 
Program 

 
 

Output:  

  
 

 

 

 

 

 



  
  

 

5.3 elif statement 
The elif statement enables us to check multiple conditions and 

execute the specific block of statements depending upon the 

true condition among them.  

 

We can have any number of elif statements in our program 

depending upon our need. However, using elif is optional. 

 

The elif statement works like an if-else-if ladder statement in 

C. It must be succeeded by an if statement. 

 

Syntax 

 

 
 



  
  

 

Flowchart: 

 
 

 

Program  

 
 



  
  

 

Output 

 

 

5.4 Nested If 
 
A nested if is an if statement that is the target of another if 

statement. Nested if statements mean an if statement inside 

another if statement. Yes, Python allows us to nest if 

statements within if statements. i.e, we can place an if 

statement inside another if statement. 

Syntax: 

 
 



  
  

 

Flowchart: 

 
Program 

 
 



  
  

 

Output: 

 

 

 

 

 

 

  



  
  

 

 

The for loop in Python is used to iterate the statements or a 

part of the program several times. It is frequently used to 

traverse the data structures like list, tuple, or dictionary. 

 

The syntax of for loop in python is given below. 

 
 

Flowchart: 

 



  
  

 

For loop Using Sequence 

  Example-1: Iterating string using for loop 
Program  

 
Output 

 

 

 

 

 

 



  
  

 

Example- 2: Program to print the table of the 

given number. 

 
Program: 

 
Output 

 

 

 



  
  

 

For loop Using range() function 

 

The range() function is used to generate the sequence of the 

numbers. If we pass the range(10), it will generate the 

numbers from 0 to 9. The syntax of the range() function is 

given below. 

 

Syntax:

 

 

 The start represents the beginning of the iteration. 

 The stop represents that the loop will iterate till stop-1. 

The range(1,5) will generate numbers 1 to 4 iterations. It 

is optional. 

 The step size is used to skip the specific numbers from 

the iteration. It is optional to use. By default, the step size 

is 1. It is optional. 

 

 

 



  
  

 

 

Example  

 
 

Output 

 
 

 

Nested for loop 

 
Python allows us to nest any number of for loops inside 

a for loop. The inner loop is executed n number of times for 

every iteration of the outer loop. The syntax is given below. 

 

 

 



  
  

 

Syntax: 

 
 

Example  

1. # User input for number of rows   
2. rows = int(input("Enter the rows:"))   
3. # Outer loop will print number of rows   
4. for i in range(0,rows+1):   
5. # Inner loop will print number of Astrisk   
6.     for j in range(i):   
7.         print("*",end = '')   
8.     print()   

 

output: 

 



  
  

 

In Python, Strings are arrays of bytes representing Unicode 

characters. However, Python does not have a character data 

type, a single character is simply a string with a length of 1. 

Square brackets can be used to access elements of the string. 

 

Python string is the collection of the characters surrounded by 

single quotes, double quotes, or triple quotes. The computer 

does not understand the characters; internally, it stores 

manipulated character as the combination of the 0's and 1's. 

 

Each character is encoded in the ASCII or Unicode character. 

So we can say that Python strings are also called the 

collection of Unicode characters. 

 

 

 

 

 

 

 

 



  
  

 

7.1 Creating String in Python 
 

 

 

 

 

 

 

 

 

Output:  

 

 

 

 

 

 #Using single quotes 
 str1 = 'Hello Python' 
 print(str1) 
 #Using double quotes 
 str2 = "Hello Python" 
 print(str2) 
  
 #Using triple quotes 
 str3 = '''''Triple quotes are generally used for 

10. represent the multiline or 
11. docstring''' 
12. print(str3) 

 



  
  

 

7.2 Python String Formatting 
 

Escape Sequence 

Let's suppose we need to write the text as - They said, "Hello 

what's going on?"- the given statement can be written in single 

quotes or double quotes but it will raise the SyntaxError as it 

contains both single and double-quotes. 

 

Example: 

1. str = "They said, "Hello what's going on?""   
2. print(str)   

 

Output: 

 

 

We can use the triple quotes to accomplish this problem but 

Python provides the escape sequence. 

 

The backslash(/) symbol denotes the escape sequence. The 

backslash can be followed by a special character and it 

interpreted differently. The single quotes inside the string 

must be escaped. We can apply the same as in the double 

quotes. 



  
  

 

Example  

 
 

Output:  

 

 

 

 

The list of an escape sequence is given below: 



  
  

 

Sr. Escape Sequence Description Example 

1. \newline It ignores the new line. print("Python1 \ 

Python2 \ 

Python3") 

Output: 

Python1 Python2 Python3 

2. \\ Backslash print("\\") 

Output: 

\ 

3. \' Single Quotes print('\'') 

Output: 

' 

4. \\'' Double Quotes print("\"") 

Output: 

" 

5. \a ASCII Bell print("\a") 

6. \b ASCII Backspace(BS) print("Hello \b World") 

Output: 

Hello World 

7. \f ASCII Formfeed print("Hello \f World!") 

Hello  World! 

8. \n ASCII Linefeed print("Hello \n World!") 

Output: 

Hello 

 World! 

9. \r ASCII Carriege Return(CR) print("Hello \r World!") 

Output: 



  
  

 

World! 

10. \t ASCII Horizontal Tab print("Hello \t World!") 

Output: 

Hello   World! 

11. \v ASCII Vertical Tab print("Hello \v World!") 

Output: 

Hello  

 World! 

12. \ooo Character with octal value print("\110\145\154\154\157") 

Output: 

Hello 

13 \xHH Character with hex value. print("\x48\x65\x6c\x6c\x6f") 

Output: 

Hello 

 

 

 

7.3 The format() method 
 

The format() method is the most flexible and useful method 

in formatting strings. The curly braces {} are used as the 

placeholder in the string and replaced by the format() method 

argument. Let's have a look at the given an example. 

 



  
  

 

 
 

 

Output:  

 

7.4 Python String functions 
 

Method Description 

capitalize() It capitalizes the first character of the 

String. This function is deprecated in 

python3 



  
  

 

casefold() It returns a version of s suitable for 

case-less comparisons. 

center(width ,fillchar) It returns a space padded string with 

the original string centred with equal 

number of left and right spaces. 

count(string,begin,end) It counts the number of occurrences 

of a substring in a String between 

begin and end index. 

decode(encoding = 

'UTF8', errors = 'strict') 

Decodes the string using codec 

registered for encoding. 

encode() Encode S using the codec 

registered for encoding. Default 

encoding is 'utf-8'. 

endswith(suffix 

,begin=0,end=len(string)) 

It returns a Boolean value if the 

string terminates with given suffix 

between begin and end. 

expandtabs(tabsize = 8) It defines tabs in string to multiple 

spaces. The default space value is 

8. 

find(substring 

,beginIndex, endIndex) 

It returns the index value of the 

string where substring is found 

between begin index and end index. 



  
  

 

format(value) It returns a formatted version of S, 

using the passed value. 

index(subsring, 

beginIndex, endIndex) 

It throws an exception if string is not 

found. It works same as find() 

method. 

isalnum() It returns true if the characters in the 

string are alphanumeric i.e., 

alphabets or numbers and there is at 

least 1 character. Otherwise, it 

returns false. 

isalpha() It returns true if all the characters are 

alphabets and there is at least one 

character, otherwise False. 

isdecimal() It returns true if all the characters of 

the string are decimals. 

isdigit() It returns true if all the characters are 

digits and there is at least one 

character, otherwise False. 

isidentifier() It returns true if the string is the valid 

identifier. 

 

 



  
  

 

Functions are the most important aspect of an application. A 

function can be defined as the organized block of reusable 

code, which can be called whenever required. 

 

Python allows us to divide a large program into the basic 

building blocks known as a function. The function contains the 

set of programming statements enclosed by {}. A function can 

be called multiple times to provide reusability and modularity 

to the Python program. 

 

The Function helps to programmer to break the program into 

the smaller part. It organizes the code very effectively and 

avoids the repetition of the code. As the program grows, 

function makes the program more organized. 

 

Python provide us various inbuilt functions 

like range() or print(). Although, the user can create its 

functions, which can be called user-defined functions. 

There are mainly two types of functions. 

1. User-define functions - The user-defined functions are 

those define by the user to perform the specific task. 

2. Built-in functions - The built-in functions are those 

functions that are pre-defined in Python. 

 



  
  

 

Advantage of Functions in Python 

 There are the following advantages of Python functions. 

 Using functions, we can avoid rewriting the same 

logic/code again and again in a program. 

 We can call Python functions multiple times in a program 

and anywhere in a program. 

 We can track a large Python program easily when it is 

divided into multiple functions. 

 Reusability is the main achievement of Python functions. 

 However, Function calling is always overhead in a 

Python program. 

 

 

8.1 Creating a Function 
 

 
 

 



  
  

 

 Let's understand the syntax of functions definition. 

 The def keyword, along with the function name is used 

to define the function. 

 The identifier rule must follow the function name. 

 A function accepts the parameter (argument), and they 

can be optional. 

 The function block is started with the colon (:), and block 

statements must be at the same indentation. 

 The return statement is used to return the value. A 

function can have only one return 

 

8.2 Function Calling 
In Python, after the function is created, we can call it from 

another function. A function must be defined before the 

function call; otherwise, the Python interpreter gives an 

error. To call the function, use the function name followed 

by the parentheses. 

 

Example: 

 



  
  

 

 

8.3 The return statement 
The return statement is used at the end of the function and 

returns the result of the function. It terminates the function 

execution and transfers the result where the function is 

called. The return statement cannot be used outside of the 

function 

 

Syntax:  

         return [expression_list]   
 

  Example: 

 
 

 

 

 



  
  

 

8.4 Arguments in function 
The arguments are types of information which can be 

passed into the function. The arguments are specified in 

the parentheses. We can pass any number of arguments, 

but they must be separate them with a comma. 

 

Consider the following example, which contains a function 

that accepts a string as the argument. 

 

Example  

1. #defining the function     
2. def func (name):     
3.     print("Hi ",name)    
4. #calling the function      
5. func("yash")      

 

types of argument 

1. Required arguments 

2. Keyword arguments 

3. Default arguments 

4. Variable-length arguments 

 
 

 

 



  
  

 

8.5 Scope of variables 
 The scopes of the variables depend upon the location 

where the variable is being declared. The variable declared 

in one part of the program may not be accessible to the 

other parts. 

 

In python, the variables are defined with the two types of 

scopes. 

1. Global variables 

2. Local variables 

 

The variable defined outside any function is known to have 

a global scope, whereas the variable defined inside a 

function is known to have a local scope. 

 

Example 1 Local Variable 

 



  
  

 

Output: 

 

 

Example 2 Global Variable 

 
Output:  

 

 


